دانلود مقاله و خرید ترجمه:قطعه‌بندی تومورهای مغزی با استفاده از شبکه‌های عصبی کانولوشن در تصاویر ام آر آی
بلافاصله پس از پرداخت دانلود کنید

کارابرن عزیز، مقالات سایت ( همگی جزو مقالات isi می باشند) بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (حتی محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi مانند IEEE، Sciencedirect، Springer، Emerald و ... انتخاب گردیده اند.

ورود اعضا
توجه توجه توجه !!!!
تمامی مقالات ترجمه شده ، انگلیسی و کتاب های این سایت با دقت تمام انتخاب شده اند. در انتخاب مقالات و کتاب ها پارامترهای جدید بودن، پر جستجو بودن، درخواست کاربران ، تعداد صفحات و ... لحاظ گردیده است. سعی بر این بوده بهترین مقالات در هر زمینه انتخاب و در اختیار شما کاربران عزیز قرار گیرد. ضمانت ما، کیفیت ماست.
نرم افزار winrar

از نرم افزار winrar برای باز کردن فایل های فشرده استفاده می شود. برای دانلود آن بر روی لینک زیر کلیک کنید
دانلود

پیشنهادات ویژه
پکیج ویژه مقالات محاسبات ابری
پکیج ویژه مقالات زنجیره تامین
پیوندهای کاربردی
پیوندهای مرتبط
مقالات ترجمه شده شبکه های عصبی
  • قطعه‌بندی تومورهای مغزی با استفاده از شبکه‌های عصبی کانولوشن در تصاویر ام آر آی

    سال انتشار:

    2016


    ترجمه فارسی عنوان مقاله:

    قطعه‌بندی تومورهای مغزی با استفاده از شبکه‌های عصبی کانولوشن در تصاویر ام آر آی


    عنوان انگلیسی مقاله:

    Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images


    منبع:

    IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 35, NO. 5, MAY 2016


    نویسنده:

    Sérgio Pereira, Adriano Pinto, Victor Alves, and Carlos A. Silva


    چکیده انگلیسی:

    Among brain tumors, gliomas are the most common and aggressive, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of oncological patients. Magnetic resonance imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. So, automatic and reliable segmentation methods are required; however, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this paper, we propose an automatic segmentation method based on Convolutional Neural Networks (CNN), exploring small 3 3 kernels. The use of small kernels allows designing a deeper architecture, besides having a positive effect against overfitting, given the fewer number of weights in the network. We also investigated the use of intensity normalization as a pre-processing step, which though not common in CNN-based segmentation methods, proved together with data augmentation to be very effective for brain tumor segmentation in MRI images. Our proposal was validated in the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013), obtaining simultaneously the first position for the complete, core, and enhancing regions in Dice Similarity Coefficient metric (0.88, 0.83, 0.77) for the Challenge data set. Also, it obtained the overall first position by the online evaluation platform. We also participated in the on-site BRATS 2015 Challenge using the same model, obtaining the second place, with Dice Similarity Coefficient metric of 0.78, 0.65, and 0.75 for the complete, core, and enhancing regions, respectively.
    Index Terms: Brain tumor | brain tumor segmentation | convolutional neural networks | deep learning | glioma | magnetic resonance imaging.


    چکیده فارسی:

    در بین تومور‌های مغزی، غده‌ها شایع‌ترین و تهاجمی‌ترین نوع آن ها هستند که در بالاترین درجات به کاهش زیاد متوسط عمر منجر می‌شوند. بدین سبب، برنامه‌ریزی درمانی، مرحله مهمی در بهبود کیفیت زندگی بیماران انکولوژی به شمار می‌رود. تصویربرداری با تشدید مغناطیس (ام آر آی) پرکابردترین روش تصویربرداری برای ارزیابی این‌گونه تومور‌ها می‌باشد، با اینهمه حجم زیاد داده‌های تولیدی ام آر آی مانع قطعه‌بندی دستی در زمان مقتضی شده و استفاده از اندازه‌گیری‌های کمی دقیق در کار بالینی را محدود می‌کند. با این حال، تغییرپذیری زیاد ساختاری و فضایی میان تومورهای مغزی مسئله قطعه بندی خودکار را با مشکل مواجه می‌کند. در این مقاله، روش قطعه‌بندی خودکار مبتنی بر شبکه‌های عصبی کانولوشن (CNN) جهت کاوش هسته‌های کوچک 3 × 3 ارائه می‌دهیم. استفاده از هسته‌های کوچک علاوه بر تأثیرگذاری مثبت در برابر تطابق بیش ار حد، امکان طراحی یک ساختار عمیق‌تر را فراهم نموده و اوزان کمتری را در شبکه نشان می‌دهد. ما هم‌چنین استفاده از عادی‌سازی شدت را با وجود عمومیت آن در روش‌های قطعه‌بندی مبتنی بر شبکه عصبی کانولوشن به عنوان مرحله پیش‌پردازش بررسی نموده‌ و اثبات کردیم که به همراه افزایش داده‌ها می‌تواند در قطعه‌بندی تصاویر ام آر آی تومورهای مغزی بسیار کارآمد باشد. طرح پیشنهادی ما مورد تأیید پایگاه داده‌ای Challenge BRATS 2013 جهت قطعه‌بندی تومورهای مغزی قرار گرفت و همزمان در نواحی کامل، هسته و افزایشی در متریک‌های ضریب شباهت دایس (88/0، 83/0، 77/0) مقام اول را در پایگاه داد‌ه‌ای Challenge بدست آورد. این طرح در پایگاه ارزیابی برخط نیز در کل مقام اول را کسب کرد. ما هم‌چنین با همان مدل در پایگاه Challenge در محل BRATS 2015 شرکت کردیم و توانستیم به کمک متریک ضریب شباهت دایس با مقادیر 78/0، 65/0 و 75/0 به ترتیب در نواحی کامل، هسته و افزایشی به مقام دوم دست‌ یابیم.
    عبارات شاخص: تومور مغزی | قطعه‌بندی تومور مغزی | شبکه‌های عصبی کانولوشن | یادگیری عمیق | غده | تصویربرداری با تشدید مغناطیس


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 12
    تعداد صفحات فایل doc فارسی: 40

    وضعیت ترجمه عناوین تصاویر و جداول: به صورت کامل ترجمه شده است

    وضعیت ترجمه متون داخل تصاویر و جداول: به صورت کامل ترجمه شده است

    حجم فایل: 2805 کیلوبایت


    قیمت: 40000 تومان  36000 تومان(10% تخفیف)


    توضیحات اضافی:




تعداد نظرات : 0

الزامی
الزامی
الزامی
شبکه-های-عصبی
موضوعات
footer