دانلود مقاله و خرید ترجمه:سیستم های تشخیص نفوذ با استفاده ازتکنیک های داده کاوی: ماشین بردار پشتیبانی
بلافاصله پس از پرداخت دانلود کنید

کارابرن عزیز، مقالات سایت ( همگی جزو مقالات isi می باشند) بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (حتی محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi مانند IEEE، Sciencedirect، Springer، Emerald و ... انتخاب گردیده اند.

آگهی چاپ مقاله isi
ورود اعضا
توجه توجه توجه !!!!
نرم افزار winrar
پیشنهادات ویژه
پیوندهای کاربردی
پیوندهای مرتبط
مقالات ترجمه شده داده کاوی
  • سیستم های تشخیص نفوذ با استفاده ازتکنیک های داده کاوی: ماشین بردار پشتیبانی

    سال انتشار:

    2013


    ترجمه فارسی عنوان مقاله:

    سیستم های تشخیص نفوذ با استفاده ازتکنیک های داده کاوی: ماشین بردار پشتیبانی


    عنوان انگلیسی مقاله:

    Intrusion Detection System Using Data Mining Technique: Support Vector Machine


    منبع:

    International Journal of Emerging Technology and Advanced Engineering, Volume 3, Issue 3, March 2013


    چکیده انگلیسی:

    Security and privacy of a system is compromised, when an intrusion happens. Intrusion Detection System (IDS) plays vital role in network security as it detects various types of attacks in network. So here, we are going to propose Intrusion Detection System using data mining technique: SVM (Support Vector Machine). Here, Classification will be done by using SVM and verification regarding the effectiveness of the proposed system will be done by conducting some experiments using NSL-KDD Cup’99 dataset which is improved version of KDD Cup’99 data set. The SVM is one of the most prominent classification algorithms in the data mining area, but its drawback is its extensive training time. In this proposed system, we have carried out some experiments using NSLKDD Cup’99 data set. The experimental results show that we can reduce extensive time required to build SVM model by performing proper data set pre-processing. Also when we do proper selection of SVM kernel function such as Gaussian Radial Basis Function, attack detection rate of SVM is increased and False Positive Rate (FPR) is decrease.
    Keywords: Classification | Intrusion Detection System IDS | Kernel Function | NSL- KDD, Preprocessing | Support Vector Machine | SVM


    چکیده فارسی:

    هنگامی که نفوذ غیر مجاز اتفاق می افتد, امنیت و حریم یک سیستمم با این اقدام سازگار می شود. سیستم تشخیص نفوذ(IDS) نقش مهمی در امنیت شبکه ایفا می کند. بنابراین در اینجا ما سیستم تشخیص نفوذ با استفاده از شیوه استخراج داده را مطرح می کنیم. SVM( ماشین بردار پشتیبان) در اینجا طبقه بندی با استفاده از SVM انجام می شود. و بررسی مربوط به سودمندی سیستم مفروض با انجام برخی از آزمایشات با استفاده از مجموعه NSL KDD CUP99 انجام می شود که نسخه پیشرفته ای از مجموعه داده KDD CUP99 می باشد.SVM یکی از برجسته ترین الگوریتم های طبقه بندی در حوزه استخراج داده ( داده کاوی) است اما عیب آن زمان آموزش زیاد می باشد. در این سیستم مفروض ما با استفاده از مجموعه داده NSL-KDD CUP99 برخی از آزمایشات را انجام دادیم. نتایج آزمایشی نشان دادند که ما می توانیم زمان زیاد لازم برای ایجاد مدل SVM را با استفاده از پیش پردازش صحیح مجموعه داده کاهش دهیم. همچنین, هنگامی که انتخاب درست تابع کرنل SVM از جمله تابع بنیادی شعاعی گاوسی را درست انجام دهیم, سرعت کشف حمله SVM افزایش می یابد و سرعت مثبت نادرست (FPR) کاهش می یابد.
    کلمات کلیدی: طبقه بندی | سیستم تشخیص نفوذ(IDS) | تابع کرنل | NSL_KDD | پیش پردازش | ماشین برداری پشتیبان(SVM).


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 6
    تعداد صفحات فایل doc فارسی: 17

    حجم فایل: 331 کیلوبایت


    قیمت: 18000 تومان  16200 تومان(10% تخفیف)


    توضیحات اضافی:




تعداد نظرات : 0

الزامی
الزامی
الزامی
داده-کاوی
موضوعات