دانلود مقاله انگلیسی:چارچوبی برای تخصیص مصرف برق جداگانه شخصی در سطح دستگاه  به فعالیت های روزانه
بلافاصله پس از پرداخت دانلود کنید

کارابرن عزیز، مقالات سایت ( همگی جزو مقالات isi می باشند) بالاترین کیفیت ترجمه را دارند، ترجمه آنها کامل و دقیق می باشد (حتی محتوای جداول و شکل های نیز ترجمه شده اند) و از بهترین مجلات isi مانند IEEE، Sciencedirect، Springer، Emerald و ... انتخاب گردیده اند.

آگهی درخواست مقاله
ورود اعضا
توجه توجه توجه !!!!
نرم افزار winrar
پیشنهادات ویژه
پیوندهای کاربردی
پیوندهای مرتبط
مقالات انگلیسی مدیریت انرژی
  • A framework for allocating personalized appliance-level disaggregated electricity consumption to daily activities

    A framework for allocating personalized appliance-level disaggregated electricity consumption to daily activities

    سال انتشار:

    2016


    عنوان انگلیسی مقاله:

    A framework for allocating personalized appliance-level disaggregated electricity consumption to daily activities


    ترجمه فارسی عنوان مقاله:

    چارچوبی برای تخصیص مصرف برق جداگانه شخصی در سطح دستگاه به فعالیت های روزانه


    منبع:

    Sciencedirect - Elsevier - Energy & Buildings, 111 (2016) 337-350. doi:10.1016/j.enbuild.2015.11.029


    نویسنده:

    Simin Ahmadi-Karvigh a, Burcin Becerik-Gerber b,∗, Lucio Soibelman


    چکیده انگلیسی:

    Residential and commercial buildings account for more than 74% of total annual electricity consumption in the United States. Studies have shown that occupants’ awareness of their behaviors in consuming electricity encourages them to change their unsustainable behaviors and improves the sustainable ones. As behaviors impact the ways that daily activities are performed, in order to develop a personalized appliance level model of an occupant’s behavior, precise activity recognition is required. In this paper, we introduce a novel framework to allocate personalized appliance-level disaggregated electricity consumption to daily activities. In our framework, using ontology-based approach, the input appliance usage data is first separated into categories of non-overlapping activity events. The separated data sets are then segmented to detect activity segments, which are next mapped into activity classes using a trained classification model. To evaluate the performance of our presented framework, an experimental validation was carried out in three test bed apartment units. Results of validation showed a total F-measure value of 0.97 for segmentation and an average accuracy of 93.41% for activity recognition. Following the activity recognition, the approximate electricity consumption associated with the recognized activities was estimated and the results of each test bed unit were compared with the others.
    Keywords: Energy awareness | Behavior-based consumption | Disaggregated electricity consumption | Daily activities | Activity recognition


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 14
    حجم فایل: 1769 کیلوبایت

    قیمت: 1000 تومان


    توضیحات اضافی:


     سفارش ترجمه مقاله


آرشیو کامل مقالات

تعداد نظرات : 0

الزامی
الزامی
الزامی
مدیریت-انرژی
موضوعات